

Mathematics: analysis and approaches Higher level Paper 3

Tuesday 8 November 2022 (afternoon)

1 hour

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- · A graphic display calculator is required for this paper.
- Answer all the questions in the answer booklet provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A clean copy of the mathematics: analysis and approaches formula booklet is required for this paper.
- The maximum mark for this examination paper is [55 marks].

[1]

Answer all questions in the answer booklet provided. Please start each question on a new page. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1. [Maximum mark: 28]

In this question you will investigate series of the form

$$\sum_{i=1}^{n} i^{q} = 1^{q} + 2^{q} + 3^{q} + \dots + n^{q} \text{ where } n, q \in \mathbb{Z}^{+}$$

and use various methods to find polynomials, in terms of n, for such series.

When q = 1, the above series is arithmetic.

(a) Show that
$$\sum_{i=1}^{n} i = \frac{1}{2} n(n+1)$$
. [1]

Consider the case when q = 2.

(b) The following table gives values of n^2 and $\sum_{i=1}^n i^2$ for n=1,2,3.

n	n^2	$\sum_{i=1}^{n} i^2$
1	1	1
2	4	5
3	9	p

- (i) Write down the value of p.
- (ii) The sum of the first n square numbers can be expressed as a cubic polynomial with three terms:

$$\sum_{i=1}^{n} i^2 = a_1 n + a_2 n^2 + a_3 n^3 \text{ where } a_1, a_2, a_3 \in \mathbb{Q}^+.$$

Hence, write down a system of three linear equations in a_1 , a_2 and a_3 . [3]

(iii) Hence, find the values of a_1 , a_2 and a_3 . [2]

(This question continues on the following page)

(Question 1 continued)

You will now consider a method that can be generalized for all values of q.

Consider the function $f(x) = 1 + x + x^2 + ... + x^n$, $n \in \mathbb{Z}^+$.

(c) Show that
$$x f'(x) = x + 2x^2 + 3x^3 + ... + nx^n$$
. [1]

Let $f_1(x) = x f'(x)$ and consider the following family of functions:

$$f_2(x) = x f_1'(x)$$

-3-

$$f_3(x) = x f_2'(x)$$

$$f_{A}(x) = x f_{3}'(x)$$

...

$$f_q(x) = x f_{q-1}{}'(x)$$

- (d) (i) Show that $f_2(x) = \sum_{i=1}^{n} i^2 x^i$. [2]
 - (ii) Prove by mathematical induction that $f_q(x) = \sum_{i=1}^n i^q x^i$, $q \in \mathbb{Z}^+$. [6]
 - (iii) Using sigma notation, write down an expression for $f_q(1)$. [1]
- (e) By considering $f(x) = 1 + x + x^2 + ... + x^n$ as a geometric series, for $x \ne 1$, show that $f(x) = \frac{x^{n+1} 1}{x 1}$. [2]
- (f) For $x \ne 1$, show that $f_1(x) = \frac{nx^{n+2} (n+1)x^{n+1} + x}{(x-1)^2}$. [3]
- (g) (i) Show that $\lim_{x\to 1} f_1(x)$ is in indeterminate form. [1]
 - (ii) Hence, by applying l'Hôpital's rule, show that $\lim_{x\to 1} f_1(x) = \frac{1}{2}n(n+1)$. [5]

2. [Maximum mark: 27]

In this question you will investigate curved surface areas and use calculus to derive key formulae used in geometry.

Consider the straight line from the origin, y = mx, where $0 \le x \le h$ and m, h are positive constants.

When this line is rotated through 360° about the *x*-axis, a cone is formed with a curved surface area A given by:

$$A = 2\pi \int_0^h y\sqrt{1+m^2} \,\mathrm{d}x.$$

- (a) Given that m=2 and h=3, show that $A=18\sqrt{5}\pi$. [2]
- (b) Now consider the general case where a cone is formed by rotating the line y = mx where $0 \le x \le h$ through 360° about the *x*-axis.
 - (i) Deduce an expression for the radius of this cone r in terms of h and m. [1]
 - (ii) Deduce an expression for the slant height l in terms of h and m. [2]
 - (iii) Hence, by using the above integral, show that $A = \pi r l$. [3]

(This question continues on the following page)

(Question 2 continued)

Consider the semi-circle, with radius r, defined by $y = \sqrt{r^2 - x^2}$ where $-r \le x \le r$.

(c) Find an expression for
$$\frac{dy}{dx}$$
. [2]

A differentiable curve y = f(x) is defined for $x_1 \le x \le x_2$ and $y \ge 0$. When any such curve is rotated through 360° about the x-axis, the surface formed has an area A given by:

$$A = 2\pi \int_{x_1}^{x_2} y \sqrt{1 + \left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^2} \, \mathrm{d}x \, .$$

(d) A sphere is formed by rotating the semi-circle $y = \sqrt{r^2 - x^2}$ where $-r \le x \le r$ through 360° about the x-axis. Show by integration that the surface area of this sphere is $4\pi r^2$. [4]

(This question continues on the following page)

(Question 2 continued)

(e) Let $f(x) = \sqrt{r^2 - x^2}$ where $-r \le x \le r$.

The graph of y = f(x) is transformed to the graph of y = f(kx), k > 0. This forms a different curve, called a semi-ellipse.

(i) Describe this geometric transformation.

[2]

(ii) Write down the x-intercepts of the graph y = f(kx) in terms of r and k.

[1]

(iii) For y = f(kx), find an expression for $\frac{dy}{dx}$ in terms of x, r and k.

[2]

(iv) The semi-ellipse y = f(kx) is rotated 360° about the x-axis to form a solid called an ellipsoid.

Find an expression in terms of r and k for the surface area, A, of the ellipsoid.

Give your answer in the form $2\pi \int_{0}^{x_{1}} \sqrt{p(x)} dx$, where p(x) is a polynomial.

[4]

- (v) Planet Earth can be modelled as an ellipsoid. In this model:
 - the ellipsoid has an axis of rotational symmetry running from the North Pole to the South Pole.
 - the distance from the North Pole to the South Pole is $12\,714\,km$.
 - the diameter of the equator is 12 756 km.

By choosing suitable values for r and k, find the surface area of Earth in km^2 correct to 4 significant figures. Give your answer in the form $a\times 10^q$ where $1\leq a<10$ and $q\in\mathbb{Z}^+$.

[4]